
Chapter 2 — Instructions: Language of the Computer 1

COMPUTERORGANIZATION AND DESIGN
The Hardware/Software Interface

5th
Edition

Chapter 2

QTSpim Simulator

QTSpim Introduction

n What is QTSpim?
n A simulator that runs assembly programs for MIPS

R2000/R3000 RISC computers.
n What does QTSpim do?

n Reads MIPS assembly language files and translates to
machine language.

n Executes the machine language instructions.
n Shows contents of registers and memory.
n Works as a debugger (supports break-points and single-

stepping).
n Provides basic Operating System - like services, like simple

I/O.

Chapter 2 — Instructions: Language of the Computer 2

Template for a MIPS Assembly Language Program

Comment giving name of program and description of function
Template.s
Bare-bones outline of MIPS assembly language program

.data
variable declarations here
...

.text

main: # indicates start of code (first instruction to execute)
remainder of program code here
...
...

MIPS Assembly Language Program Structure

n QTSpim source files are just a plain text file.
n Source file name should end in suffix .s or .asm
n .data directive

n Placed in section of program identified with the assembler
directive .data

n Declares variable names used in program; storage allocated in
main memory (RAM).

n .text directive
n Placed in section of program identified with the assembler

directive .text
n Contains program code (instructions).
n Starting point for code execution given label main:
n Ending point of main code should use exit system call (covered

later under System Calls).

Chapter 2 — Instructions: Language of the Computer 3

Example Program: add2numbersProg1.asm

Program adds 10 and 11

.text # text section

.globl main # call main by SPIM

main:

ori $8,$0,0xA # load “10" into register 8
ori $9,$0,0xB # load “11" into register 9

add $10,$8,$9 # add registers 8 and 9, put result
in register 10

Common QTSpim Directives

n .globl sym
n Declare that the symbol sym is global and can be

referenced from other files.
n .word w1, …, wn

n Store n 32-bit quantities in successive memory words.
n .byte b1, …, bn

n Store n 8-bit quantities in successive memory bytes.
n .ascii str

n Store the string in memory but do not null-terminate it:
n Characters are represented in single quotes ‘a’
n Strings are represented in double-quotes “str”
n Special characters, e.g. \n, \t, follow C convention.

n .asciiz str
n Store the string in memory and null-terminate it.

Chapter 2 — Instructions: Language of the Computer 4

Less Common Directives

n .float f1, …, fn
n Store n floating point single precision numbers in

successive memory locations.
n .double d1, …, dn

n Store n floating point double precision numbers in
successive memory locations.

n .space n
n Reserves n successive bytes of space.

n .align n
n Align the next datum on a 2n byte boundary. For

example, .align 2 aligns next value on a word boundary.
.align 0 turns off automatic alignment of .half, .word, etc.
till next .data directive.

QTSpim Pseudoinstructions

n Most assembler instructions represent machine
instructions one-to-one.

n Pseudoinstructions examples:
move $t0, $t1 → add $t0, $zero, $t1

li $t4, 4 → ori $t4, $0, 4

la $t2, message → lui $t2, (upper 16 bits)

ori $t2, $t2, (lower 16)

blt $t0, $t1, L → slt $at, $t0, $t1
bne $at, $zero, L

n There is a good chance that QTSpim will use register 1
($at) as a temporary location.

Chapter 2 — Instructions: Language of the Computer 5

QTSpim System Calls

n System Calls (syscall)
n Operating systems-like services.

n Method
n Load system call code into register $v0 (see following

table for codes).
n Load arguments into registers $a0, …, $a3
n Call system with SPIM instruction syscall
n After call, return value is in register $v0, or $f0 for

floating point results.

QTSpim System Call Codes

Service Code (put in $v0) Arguments Result

print_int 1 $a0=integer

print_float 2 $f12=float

print_double 3 $f12=double

print_string 4 $a0=address of string

read_int 5 int in $v0

read_float 6 float in $f0

read_double 7 double in $f0

read_string 8 $a0=buffer, $a1=length

sbrk 9 $a0=amount addr in $v0

exit 10

Chapter 2 — Instructions: Language of the Computer 6

Example QTSpim Print Program

.data
str: .asciiz “The answer is ”

.text
main:

li $v0, 4 # Load immediate; 4 is the code for print_string
la $a0, str # The print_string syscall expects the string

address as the argument; la is the instruction
to load the address of the operand (str).

syscall # QTSpim will now invoke syscall #4
li $v0, 1 # syscall #1 corresponds to print_int
li $a0, 5 # print_int expects the integer as its argument
syscall # QTSpim will now invoke syscall #1

Example MIPS Program

.text .data
.globl main str1: .asciiz “Enter 2 numbers:”
main: str2: .asciiz “The sum is ”

li $v0, 4
la $a0, str1
syscall
li $v0, 5
syscall
add $t0, $v0, $zero
li $v0, 5
syscall
add $t1, $v0, $zero
li $v0, 4
la $a0, str2
syscall
li $v0, 1
add $a0, $t1, $t0
syscall

n Write an assembly program to prompt the user for two numbers and
print the sum of the two numbers.

Chapter 2 — Instructions: Language of the Computer 7

QTSpim Example Program: systemCalls.asm

Enter two integers in

console window

Sum is displayed

.text

.globl main

main:

la $t0, value

li $v0, 5

syscall

sw $v0, 0($t0)

li $v0, 5

syscall

sw $v0, 4($t0)

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 8($t0)

li $v0, 4

la $a0, msg1

syscall

li $v0, 1
move $a0, $t3

syscall

li $v0, 10

syscall

.data

value: .word 0, 0, 0
msg1: .asciiz “Sum = "

system call code
for read_int

result returned by call

argument to print_string call

system call code
for print_string

system call code
for print_int

argument to print_int call

system call code
for exit

More QTSpim Example Programs

n On the course web page, you will find a link to an examples
zip file that has 18 simple and well-documented MIPS
assembly programs. Run the code in the order below of
increasing complexity:
1. add2numbersProg1
2. add2numbersProg2
3. storeWords
4. swap2memoryWords
5. branchJump
6. systemCalls
7. overflow
8. averageOfBytes
9. printLoop
10. sumOfSquaresProg1
11. sumOfSquaresProg2
12. sumOfSquaresProg3
13. procCallsProg1
14. procCallsProg1Modified
15. procCallsProg2
16. addFirst100
17. factorialNonRecursive
18. factorialRecursive

Chapter 2 — Instructions: Language of the Computer 8

Using QTSpim

n Loading source file
n Use File -> Load file

n Any grammatical errors will be flagged when you open your file.
n Simulation

n Simulator -> Settings :
n Accept pseudo instructions is the only box that should be checked.

n Simulator -> Run Parameters : to load the Program Counter with the
address of the first instruction:

n Enter Address Value as “0x00400000”
n Simulator -> Run/Continue or Single Step to run a loaded program.
n Simulator -> Stop : stop execution.
n Simulator -> Clear Registers and Reinitialize : clean-up before new

run.
n Breakpoints

n Break points are set/cleared by right-clicking on an instruction.

Conclusions

n The code presented so far should get you started in writing your
own MIPS assembly.

n Remember the only way to master the MIPS assembly
language – in fact, any computer language – is to write lots and
lots of code.

n For anyone aspiring to understand modern computer
architecture it is rather helpful to master MIPS assembly as all
modern computers (since the mid-80’s) have been inspired by, if
not based fully or partly on, the MIPS instruction set
architecture.

